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STABILITY OF THE SURFACE OF A GAS BUBBLE PULSATING IN A LIQUID 

O. V. Voinov and V. V. Perepelkin UDC 541.24:532.5 

This article examines the stability of the surface of a spherical gas bubble undergoing 
nonlinear oscillations. We study the dynamics of small perturbations as a function of the 
wavelength and parameters of the nonlinear bubble pulsations. An approach is developed for 
analyzing the dynamics of the bubble-surface perturbations on the basis of solution of the 
differential equation of stability for a pulsation half-period. The shortwave approximation 
is used to obtain a formula for the increment of the perturbation, and an analogy is estab- 
lished between the stability problem and the problem of the passage of a particle across a 
potential barrier in quantum mechanics. Asymptotic formulas are found for the rate of growth 
of perturbations in the case of large-amplitude pulsations, and a comparison is made with 
exact numerical calculations. It is shown that the rate of growth of perturbations of a pre- 
scribed wavelength is a bounded function with infinite intensification of the pulsations. 
With consideration of capillary forces, it was found that the most rapidly growing perturba- 
tions shift in the shortwave direction as the amplitude of the pulsations intensifies. It 
is shown that Taylor instability is the main reason for rupture of the surface of the pul- 
sating gas bubble. 

The stability of a plane interface between two liquids was first examined by Taylor [i] 
in connection with the problem of bubble dynamics in an underwater explosion. Experiments 
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revealed a needlelike disturbance of the spherical shape of the bubble, which took the form 
of a "sea urchin" [2]. Taylor showed that the interface was unstable if the acceleration 
of the boundary was directed from the less-dense toward the more-dense liquid. The authors 
of [3] studied the instability of a spherical boundary of an expanding or collapsing cavita- 
tional cavity in the case where the acceleration of the cavity wall was sign-constant and 
was directed toward the cavity's center. Such a boundary is stable in Taylor's theory but, 
due to the spherical symmetry of the problem, the amplitudes of the perturbations of the cavity 
surface depend on the radius of the bubble R as R -I/4. Here, the collapsing cavity turns 
out to be unstable (Birkhoff-Plesset instability). The stability of the surface of a periodi- 
cally pulsating gas bubble has been studied only for linear or slightly nonlinear pulsations 
[4], when the radius R(t) is described well by the first three terms of a Fourier series. 
Parametric excitation of surface waves was studied on the basis of the stability equation, 
which in this case takes the form of a Mathieu equation. The method used in [4] is inap- 
plicable for large-amplitude pulsations, when the graph of the function R(t) has sharp dis- 
continuities. 

i. Formulation of the Problem and Method of Solution. In the absence of body forces, 
a gas bubble of radius R 0' is at rest in an infinite volume of an ideal incompressible fluid. 
At a certain moment of time t' = 0, the pressure in the liquid at infinity P0 suddenly changes 
to p~. As a result, the bubble begins to pulsate. It is assumed that the pressure of the 
gas inside the bubble is described by the polytropic curve pg = const pgk (k is the index 
of the curve) and that the density of the gas pg inside the bubble is always much less than 
the density of the surrounding fluid ps pg << p~. 

Let the following equation describe the surface of the bubble [3] in a spherical coordi- 
nate system r, 8, 9 with its origin at the bubble's center 

r = R ' - k  a;y.,~(O,(~), [a,~l << B '  , 

where R'(t') is the running radius of the bubble; an'(t') is the small amplitude of the devia- 
tion from spherical form; Yn(8, ~ ) is a spherical surface harmonic of degree n. Then the 
equations for R' and an' can be written in dimensionless form 

3/ /~  =(~ ~_ 2~) B -~h 2o RR+-E R i, R ( o ) = t  R(o)=o; (1.1) 

"" ~ ~ 3 - ( ~ -  t) (n + 2) R~. ( 1 . 2 )  g ~ - - ~ , , ( t ) u , ~ = O ,  ~ ,~ ( t )=  n +  E - - E +  ~ 

Here R = R'/R 0' n'R3/2/R0 ' t' i/ , o' t t o' , Yn = a , t = (P~/Os a/R0 , r = P0/P~; o = /R0'p~; and 
are the dimensionless time and surface tension; the dot above the letters denotes differentia- 
tion with respect to t. Equations (1.2) for modified amplitudes Yn with different numbers 
n are mutually independent, so we will henceforth omit the subscript n. 

Figure 1 shows characteristic graphs of the solutions of Eq. (i.i) with different s and 
o = 0. Curves 1-4 correspond to e = 0, 0.02, 0.I, and 0.25. The functions R(t) and thus 
~(t), are periodic. Their period corresponds to the pulsations of the bubble T. Thus, (1.2) 
is an equation of the Hill type. In accordance with Floke's theory [5], its solution has 
the form y = ~(t)exp(~it) + ~(t)exp(~2t), where ~ and ~ are T-periodic functions. Since 
~(t) is even, then ~z = -~2 ~ ~, and the characteristic index ~ = Ln(yz(T) • /yi2(T) - I)/T. 
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Here Yi = Yi(T) is the solution of Eq. (1.2) with the initial conditions yi(0) = i, ~i(0) = 
0. The spherical surface of the bubble will be stable against perturbations with the number 
n if the amplitude of y(t, n, s, o, k)is finite over time. For this to occur, the charac- 
teristic index ~ must be a purely imaginary number. The latter is true only when lyi(T)l < i. 
At lyz(T)[ > i, 

~ e ~ :  ]n( I ~I(T)1 + Vg[(T) -- ~)/T (1.3)  

and the amplitude of the perturbations increases exponentially. Thus, to solve the stability 
problem and determine the law governing perturbation growth, it is sufficient to calculate 

the value of yl(T). Let Y0(t)={ yll Yl). ~ be the matrix of two linearly independent solutions 
\ g2 Y2 / 

of Eq. (1.2) with unit initial data Y o ( 0 ) : / 0  t ) .  Then Y(T/2) = Y(0)D, Y(T/2)D-i = Y(0) 

[D = Y0(T/2)] is valid for the matrix Y of two arbitrary linearly independent solutions with 
the initial values Y(0). Considering the symmetry of the functions R(t) and ~(t) relative 
to the moment of time t = T/2, and making the substitution t + T - t in the last formula, 
with ~ becoming -~ in this case, we obtain the following: 

Y ( T ) = Y ( T / 2 ) J D - ~ J = Y ( O ) D J D - * J ,  J = ( ~  _~)" 
In particular, Y0(T) = DJD-ij. By virtue of the fact that IDI = i, it follows that 

yl(T) : 2g~(T/2)y2(r/2)-- i ,  ( 1 . 4 )  

and to solve the stability problem it is sufficient to calculate Eq. (1.2) for a pulsation 
half-period. 

2. Dynamics of Shortwave Perturbations (n m i). The equation for the amplitudes of 
the perturbations (1.2) can be rewritten in the form 

y +  12q(t)---~ g = 0 ;  (2.1) 

q(t)= ---~ R3 (2n + i) ., = ~ .  (2.2) 

The parameter o is very small for sufficiently large bubbles. Thus, o = 0.15"10 -~ for 
bubble in water with R 0' = I0 -3 m, P0 = 0.i MPa, and ~ = 0.2. Thus, with nonlinear pulsa- 

tions, when the acceleration of the wall reaches large values, the form of the function q(t) 
is determined within a broad range of n mainly by the term -~/R. As a result, the function 
q(t) will have a simple zero at the point t, < T/2: q(t,) = 0. Meanwhile, q(t) > 0 at 0 
t < t, and q(t) < 0 at t, < t ~ T/2. In the case n m i, Eq. (2.1) can be regarded as an 
equation with a large parameter having a turning point. 

In accordance with the WKB method, the two linearly independent solutions (2.1) can be 
written in the following form with the accuracy O(~ -i) at 0 ~ t < t,: 

yi = q-1/4C-( cos ( i f  (t) _L ~/4 ~- ~), I (t) = ~ ]/q dt. (2 .3)  
t 

The amplitudes of the perturbations remain finite on this time interval for any n. Similar- 
ly, the following is valid in the region t, < t ~ T/2 to within O(l-i): 

t 

Yi = (-- q)-1/4C~ exp (~K (t)), K (t) = ~ V - -  q dr. (2 .4)  
t ,  

Here the exponentially small term exp (-IK) is not considered. The exponentially increasing 
solution (2.4) corresponds to Taylor instability of the interface of two fluids during ac- 
celeration directed from the lighter to the heavier fluid. 
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The constants Ci + and C i- in Eqs. (2.3) and (2.4) are connected to each other by the 
solution of Eq. (2.1) in a small neighborhood of the turning point t,, where asymptotic rep- 
resentations (2.3) and (2.4) lose significance. The problem of the transition in the asymp- 
totic solution through a simple zero of the function q(t) has been solved in quantum mecha- 
nics in the quasiclassical theory of the passage of a particle across a potential barrier. 
In accordance with the conjugate formulas of quantum mechanics [6], the following is valid 
to within small O(I-2/3): 

C~ + = C7 c o s ~ .  ( 2 . 5 )  

With allowance for the unit initial conditions for Yl, Y2, and ~(0) = 0, we can use Eqs. (2.3) 
(2.5) to find the corresponding values of the constants ~i, Ci-: ~i + II(0) + ~/4 = 0, C I- = 
qi/4(0), ~2 = ~i + ~/2, C 2- = I-iq-i/4(0). It follows from this and from (1.4), (2.4), and 
(2.5) that 

y~(T)  = exp (2%Ko) cos 2~I o, K o  = K ( T / 2 ) ,  I o = f (O) .  ( 2 . 6 )  

With an increase in the number of the surface mode n, the characteristic index (1.3) 
increases in order of magnitude as 21K0/T ~ ~ This is true within a limited range of n 
in which capillary forces can be ignored. 

3. Asymptotes with Nonlinear Pulsations (E ~ i). Let us examine the case when the 
capillary forces are insignificant and we can put o = 0. Taking the first integral of the 
Rayleigh equation into account, 

- 0 ,  = + 

we r e p r e s e n t  t h e  f u n c t i o n  q ( t )  in  ( 2 . 1 )  i n  t h e  fo rm 

q(t )  = - - R / R  = ( t  -F a ) R  -~ - -  k a R  - ~ - ~ .  ( 3 . 2 )  

In  t h e  l i m i t i n g  c a s e  r = 0, Eqs .  ( 2 . 1 )  and ( 3 . 1 )  and t h e  a b o v e  f u n c t i o n  q ( t )  d e s c r i b e  t h e  
c l o s u r e  o f  a c a v i t a t i o n a l  c a v i t y  in  an i n f i n i t e  vo lume  o f  an i d e a l  f l u i d  in  t h e  a b s e n c e  o f  
c a p i l l a r y  f o r c e s .  Dur i ng  t h e  f i n a l  s t a g e  o f  c l o s u r e  R § 0 t h e  s o l u t i o n s  o f  ( 2 . 1 )  a r e  r e p r e -  
s e n t e d  by t h e  a s y m p t o t e  

y ~ c o n s t R  5/4exp i ~- - - - ~  l n R  , i =  ~ f ~ L  ( 3 . 3 )  

On t h e  o t h e r  hand ,  i t  f o l l o w s  f rom ( 2 . 3 )  a t  n >> 1 t h a t  y Ncons tR~/~exp  i~-~ X l n  t - -  V i - - ~  " 

At R § 0, t h i s  e x p r e s s i o n  has  t h e  a s y m p t o t e ,  and f o r  i t  t o  c o i n c i d e  e x a c t l y  w i t h  ( 3 . 3 )  i t  
i s  n e c e s s a r y  t o  s e t  ~ = / n  - 25 /24 .  The p a r a m e t e r  t w i l l  h e n c e f o r t h  be d e t e r m i n e d  in  t h i s  
manne r ,  n o t  as  i t  was in  ( 2 . 2 ) .  

At r § 0, t h e  r a d i u s  o f  t h e  b u b b l e  d u r i n g  p u l s a t i o n s  c h a n g e s  w i t h i n  t h e  r a n g e  f rom i t s  
maximum value R(0) = 1 to the minimum value R m ~ R(T/2) + 0: 

Rm = b-a(t + A / ( 3 k  - -  3) -~ O~/(h-1))),  A = (t + a ) - ' b  -~, 

b = (1 § l /a)l /(~(h-~)).  

At t h e  moment o f  t i m e  t,. e (0 ,  T / 2 ) ,  b e i n g  a s i m p l e  z e r o  o f  t h e  f u n c t i o n  q ( t )  ( 3 . 2 ) ,  R,~ 
R(t,~) = b - l k Z / ( 3 ( k - 1 ) ) .  "~ I t  s h o u l d  be n o t e d  t h a t  a t  e < 1, R ,  - Rm << 1. E q u a t i o n s  (2~ '3) ,  
( 2 . 6 ) ,  and ( 3 . 2 )  l e a d  us  t o  

l o : ]/r-~ d t ~ - -  3 L (17) --if-, 

0 1 

V t -F (z - -  czkR -3(h-1)  L 
( R )  = 1 + r - -  aR  -~(~-1)  ~ R 3" 

(3.4) 
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The minus sign in front of the last integral .is due to the fact that the velocity of the bubble 
wall is negative during the collapse stage: R ~ 0. 

For R - R, we can put 

L (R)  ~ L I (R)  = 1 / 1  + ~ - -  ~k~ -3(h-1)  
I+~ -- aR -~(~-1) (3.5) 

to within the terms 0(~I/(k-i)). At R - i, the following is valid to within small 0(~2): 

aL ~=0 all (3.6) L ~ L + = L I~=o + --g-s a ,  L I  ~ L -  = I -}- oo~ ==o a" 

Considering that L + § L- at R + R,, for a ~ 0 we can prove the validity of a compound 
expansion suitable for any R e [R,, i]: L = L I + L + - L- + 0(~ I/(k-l), ~2). It follows from 
this and from (3.5), (3.6) that L = L I + L 2 + ~L3/2 + O(~I/(k-1), ~2),L 2 = (i - R3) -I/2 - i, 
L 3 = R-3(k-z)[(l - R3k)(l - R3) -3/2 - 1 - kL2]. 

Inserting these expressions into (3.4), we obtain the following to within the terms 
In ~O(~/(k-~), ~2): 

1 

= a ---- L i - - ~ .  ( 3 . 7 )  
R, 

The first two integrals are calculated in elementary functions 

11 = 3(k--i)  \ ~ - - i ]  ] -~a  6(k--i)  +0(a~) '  1 2 :  

: - ~  l n 2  + 0 

I 

Within the scope of the accuracy of our calculation of I 0, the integral 4=J 
/i 

0 

depends parametrically only on k and can be easily calculated numerically. Analogously to 
I0, the value of K 0 is also determined approximately. In accordance with (2.4), (2.6), and 
(3.2), 

T/2 xm 

K o = ] / - - q d t  ---- ] / ~ ( a - - l )  , x ' ,  
t ,  

~ *  (3.8) 
O~ /~--3('r x $ . ~ k - 1  x m  = I --~ 0(o~1/(h-1)), 

M = 1 -  x ~ A x - 1 / ( h - l )  = t ---------'~ -~- 

L3/~ -? O (~i/<i~-i)) 

Integrating the approximate value of M within the range from x, to i, to within in~O(~ I/(k-I)) 

we obtain 

Ko = ~/[V6(Vk + I)1. (3.9) 

Table 1 compares for different k exact values of K 0 determined on a computer from Eq. 
(3.8) and approximate values of the same from (3.9). The top number is the exact value cal- 
culated with e = 0.1, while the bottom number is the approximate value. 

Table 2 shows values of ~ for k = 1.4, calculated from the same approximate formulas 
(bottom number) and found from the amplitude of y1(T) as determined by numerical calculation 
of system (1.1)-(1.2) (top number). The appreciable divergence of the values of ~ at e = 
0.1 and n = 50 can be attributed to the fact that the argument of the cosine in (2.6) is cal- 
culated by means of (3.7) to within the terms vrnln ~O(~ I[(k-I), ~2). Thus, for more accurate 
determination of the characteristic index with large n and moderately large e, it is necessary 
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TABLE i 

K0 

l,l 0,625 
0,626 

t,2 0,609 
0,6i2 

1,3 0,593 
0,599 

1,4 0,577 
0,587 

Fig. 2 

TABLE 2 

n B 

O,1 0,05 I O,Ol 

2 I 0,992 0,314 } 0,4i4 
0,882 0,272 0,602 

6 i,25~ 1,675 I i,544 
i309 1,650 I 1,546 

lO 2,003 2,05i } 2,271 
1,949 2,027 I 2,251 

5O 4,069 
2,654 

4,5i2 4,132 
4,557 4,iiO 

to calculate I 0 directly from (3.4) by numerical integration. It should be noted that ap- 
proximate calculation of K 0 from (3.9) does not yield a large relative error in the deter- 

mination of ~. 

Equation (3.9) shows that at g + 0 there is a limiting value of K 0. Curve I in Fig. 
2 shows the graph of the dependence of K 0 (3.8) at k = 1.4 on the pressure gradient P~/P0 = 
i/g. The dashed line corresponds to the limiting value (3.9). It is evident that K 0 depends 
significantly on s only in the region of relatively small pulsation amplitudes. In this re- 
gion, when the linear theory of bubble pulsations is valid, (i-- ~ ~ i), we have R(t) = i - 
(I - e)(l - cos~t)/~ 2, ~2 = 3k, and K 0 = 0.692/(1 -~)/k. In particular, for k = 1.4, K 0 = 
0.585~ - g. Curve 2 shows the graph of the values of K 0 obtained from this formula. It 
is noteworthy that the formula obtained on the basis of the linear theory accurately describes 
the behavior of K 0 in the region of large nonlinear pulsations of the bubble~ 

Given sufficiently small initial perturbations, the main role is played by perturbations 
with a maximum characteristic index corresponding to the number of the mode n = N. The num- 
ber N can be evaluated on the basis of consideration of the capillary forces. In the short- 
wave region (n ~ i), viscosity may also be important. For simplicity, this is not considered 
here. 

4. Effect of Capillary Forces. With allowance for capillary forces, o ~ 0. We will 
examine the case of a sufficiently large bubble, when ~ ~ 1 and surface tension has an effect 
only in the shortwave region. The effect of o on the behavior of the radius R(t) can thus 
be ignored. The parameter K 0 in (2.4), (2.6), determining mainly the value of the charac- 
teristic index, will be written in the form 

Ko 

or m ~ ~ ]~/rkx--i--Yx--2/Z(k--1) dx 
]/6(k -- i) i -- x -- Ax -ll(~-i) x ': 

where x and x m are determined in (3.8); E ~ on2b-2(l + ~); x... is found from the equation 
I = (kx, - l)x, 2/3(k-I). " 

415 



As shown above, in the case of nonlinear pulsations of large amplitude, we can set x m = 
i and we can ignore the term containing A ~ a17(k-1): 

I 

l !, V kx -- t -- Ex -'2/*(k-1) dx 
K 0  ~ _ [ /g  (k - l )  i - z T "  

An analytic approximation of this integral is possible if we make the substitution kx - 1 - 
2x -2/3(k-I) = (k - 1 - Z)[(x - x,)/(l - x,)]. The error of calculation of the integral is 
no greater than 1% for k = 1.4. As a result, 

Ko z V~ (F_ ~ ) ( k -  i - . ,  ~ + V7." 

Since cos 2110 in (2.6) is arapidly oscillating function of i, the highest rate of growth will 
be seen for a perturbation with a number close to the number for which the index of the ex- 
ponent 21K 0 is maximal. The maximum of 21K 0 is reached at a fixed value of I N dependent para- 
metrically only on k. Here, the number of the fastest-growing mode 

i / -  z~ 1 (4.1) N ~  a(l+------~b' b ~ R m .  

For  k = 1 . 4 ,  t h e  maximum o f  2ZK 0 i s  r e a c h e d  a t  Z N = 0 . 0 6 4 ,  x ,  = 0 . 7 8 3 ,  and 

max (2~K0) ~ 0.462 V~(a ( i  + a)) -1/4. ( 4 . 2 )  

An i n c r e a s e  in  n (n > N) i s  a c c o m p a n i e d  by an i n c r e a s e  in  t h e  r o l e  o f  s u r f a c e  t e n s i o n .  
The i n d e x  21K 0 d e c r e a s e s  and ,  b e g i n n i n g  w i t h  a c e r t a i n  number  N , ,  c a p i l l a r y  f o r c e s  s h o u l d  
suppress the development of Taylor instability at long wavelengths corresponding to n > N,. 
With an increase in n, the turning point t, + T/2 and K 0 ~ 0 in (2.4). Also, although a high 
degree of accuracy cannot be expected of the WKB method in the region t, < t 5 T/2 either, 
it is nonetheless possible to evaluate N, as the number of the mode at which t, = T/2 and 

V b- the region of negative values of q(t) in (2.2) disappears: N,N ~(i+~)k--1 

Then we determine the region of numbers n which is most dangerous for breakup of the 
bubble as N 5 n < N,. It should be noted that N,/N = /(k - l)/E N and, in particular, N, = 
2.5N for k = 1.4. We can use (4.1) and (4.2) to analyze the effect of the dimensionless pres- 
sure gradient e, initial pressure P0, initial bubble radius R0', and surface tension o' on 
the development of instability. It is evident that a change in these parameters leading to 
a reduction in e or o = eo'/p0R 0' increases N and the rate of growth of the corresponding 
perturbation, thus increasing the instability of the bubble surface. 

It is interesting to evaluate the above quantities for a specific example. Let R 0' = 
10 -3 m, P0 = 0.i MPa, e = 0.i, o' = 0.073 N/m, then o = 7.3"10 -5 , b = 3.8, and, in accordance 

with (4.1), (4.2), 

V b ~ 1 0 0 ,  max(2%Ko),~9.24. 
o.o64 

N ~  o(t  + a) 

Thus ,  w i t h i n  two c y c l e s  o f  o s c i l l a t i o n  o f  t h e  b u b b l e  r a d i u s ,  t h e  a m p l i t u d e  o f  t h e  mos t  d a n g e r -  
ous  p e r t u r b a t i o n ,  w i t h  t h e  number  N, i n c r e a s e s  a huge  number  o f  t i m e s  ( - 1 0 s ) .  T h i s  i s  more 
t h a n  s u f f i c i e n t  f o r  b r e a k u p  o f  t h e  s u r f a c e  a t  t h i s  w a v e l e n g t h ,  i f  by b r e a k u p  we mean t h e  s i t u a -  
t i o n  whe reby  t h e  a m p l i t u d e  e x c e e d s  o n e - q u a r t e r  o f  t h e  w a v e l e n g t h ,  i . e . ,  t h e  s m a l l  p e r t u r b a t i o n  
becomes a f i n i t e  p e r t u r b a t i o n .  I t  s h o u l d  be  n o t e d  t h a t  t h e  a m p l i t u d e  o f  p e r t u r b a t i o n s  w i t h  
n ~ 2 -4  s i m u l t a n e o u s l y  c h a n g e s  by o n l y  one o r  two o r d e r s  o f  m a g n i t u d e .  

Thus ,  T a y l o r  i n s t a b i l i t y  o f  t h e  s u r f a c e  o f  t h e  gas  b u b b l e  i s  a more i m p o r t a n t  f a c t o r  
t h a n  B i r k h o f f - P l e s s e t  i n s t a b i l i t y  c a u s e d  by t h e  s p h e r i c a l  symmet ry  o f  t h e  p r o b l e m  i n  t h e  c o l -  
lapse of a cavitation bubble [3]. The latter instability does not intensify with repetition 
of the collapse cycle, while in the case of Taylor instability there is an increase in the 
amplitude of the perturbations in each cycle by the factor exp (21K0). Moreover, the bubble 
must collapse many times for the manifestation of Birkhoff-Plesset instability, while the 
occurrence of Taylor instability requires 3-4 collapses over the radius if the wavelength 
of the disturbance is sufficiently small. It follows from this that the main reason for break 
up of the surface of a pulsating gas bubble is Taylor instability. 
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We did not examine the case of a bubble which is simultaneously undergoing pulsations 
and translation. Thus, Kelvin-Helmholtz instability of the bubble surface (connected with 
discontinuity of tangential velocity at the gas-liquid boundary) remains outside the scope 
of the present discussion. However, it can be suggested that, given sufficiently small ini- 
tial translation velocities of a bubble, Kelvin-Helmholtz instability will be less important 
than Taylor instability and the conclusions reached here will remain valid. 

i. 

2. 
3. 

4. 

5. 

6. 

LITERATURE CITED 

G. Taylor, "The instability of liquid surfaces when accelerated in a direction perpen- 
dicular to their planes," Prec. R. Soc., A201, 192 (1950). 
R. Cowle, Underwater Explosions [Russian translation], IL, Moscow (1950). 
M. S. Plesset and T. P. Mitchell, "On the stability of the spherical shape of a vapor 
cavity in a liquid," Q. Appl. Math., 13, No. 4 (1956). 
W. Hermans, "On the instability of a translating gas bubble under the influence of a 
pressure step," Philips Res. Rep. Suppl., No. 3 (1973). 
B. P. Demidovich, Lectures on the Mathematical Theory of Stability [in Russian], Nauka, 
Moscow (1967). 
L. Schiff, Quantum Mechanics, McGraw-Hill, New York (1968). 

STUDY OF NONSTEADY LOADS IN THE ACCELERATED AND SUDDEN MOTION 

OF BODIES OF DIFFERENT FORM 

V. V. Podlubnyi and A. S. Fonarev UDC 533.6.011 

Together with the need to calculate the aerodynamic and strength characteristics of 
bodies during steady-state motion, it is often necessary to evaluate nonsteady forces acting 
during abrupt changes in the velocity regime - especially during sudden acceleration of a 
body from a state of rest to a specified steady flight velocity. It is interesting to deter- 
mine the additional loads (compared to the steady phase of motion) that develop during non- 
steady flow past the body. Hero, the important characteristics are the maximum possible pros- 
sure and force and the characteristic time of the nonsteady transitional processes~ 

Below we examine the problem of the accelerated motion of certain bodies (a sphere, 
a cylinder with a flat edge, and a cone) from a state of rest to a specified subsonic or 
supersonic velocity with different accelerations. We will include the case of sudden motion 
of the body with a prescribed velocity. Using a numerical method, we obtain the nonsteady 
aerodynamic characteristics of the body for different accelerations. An analytical method 
is proposed for calculating the pressure distribution at the initial moment of time and the 
maximum forces present in the case of sudden motion. 

i. Formulation of the Problem and Method of Numerical Solution. Let a solid of revolu- 
tion of a specified form begin to move from a state of rest at the initial moment of time 
t = 0. Moving with steady acceleraton during the time T, the body is assumed to reach a velo- 
city corresponding to a prescribed Mach number M. The gas is considered to be ideal and to 
be in a state of rest with a constant pressure P0 and density P0- The adiabatic exponent 
of the gas is y = 1.4. 

In the coordinate system connected with the body, the flow of the gas is described by 
the two-dimensional nonsteady Euler equations 

o o 0 (py) + ~ (puy) + -~y (pry) = O, 

o o o (puy) + ~ [(p + pu ~) y] + N-y (puvy) = O, 
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pp. 83-88, May-Juno, 1989. Original article submitted September 3, 1987; revision sub- 
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